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A Method for the Generation of General Three-Dimensional
Coordinates Between Bodies of Arbitrary Shapes*

by

Z. U. A. Warsit

Department of Aerospace Engineering
Mississippi State University
Mississippi State, MS 39762

Abstract

Analytical development of a set of second order elliptic partial

differential equations for the generation of three-dimensional curvi-

linear coordinates between two arbitrary shaped bodies is presented.

The resulting equations have only two independent variables and therefore

require an order of magnitude less working core capacity than when equations

depending on all three independent variables are considered. The method

also allows, in a straight forward manner, the possibility of coordinate

contraction in the desired regions.

An exact solution of the proposed equations for the case of an inner

prolate ellipsoid and an outer sphere with coordinate contraction is pre-

sented to demonstrate that by using these equations it is possible to

generate three-dimensional coordinates between analytically specified

surfaces of simple forms by analytical means.

The fundamental constraining equations which have been adopted for

the generation of coordinates are a 0 and A2n .0, where A2 is the

surface Beltrami operator of the second order.
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1. Introduction

At present a number of techniques are under active development

for the generation of three-dimensional body-oriented coordinate systems

for use in the numerical solution of the Navier-Stokes equations and

other field equations where the exact specification of the boundary

conditions is of prime importance. Among these efforts two easily dis-

cernable groups can be formed, (i) algebraic methods, and (ii) the

elliptic equations method. In the first group the grid points in space

are obtained by some interpolation or blending functions scheme which

depends on the given boundary data. The choice of the interpolation

scheme or of the blending functions is crucial in achieving a desired

order of smoothness and distribution of the grid points in space. This

line of effort has actively been considered by Eiseman [1,2], Smith and

Weigel [3], and Erikason [4]. In the second group of efforts, a set of

three poisson equations in the curvilinear coordinates are first inverted

and then solved for the Cartesian coordinates under the prescribed values

at the given boundaries. Thus in essence all the methods of the second

i group are a straight forward extension of the work of Thompson et al [5]

in two dimensions. Research in this area has been conducted by Mastin

et al [6], Yu [71, Ghia et al [8], and Graves [9].

At this stage of research it is premature to compare the two groups

since neither of them have been fully investigated for their inherent

potentials. However, based on the success of the differential equations

approach in two dimensions, e.g. [5], it is desirable to further investi-

gate the elliptic equations approach for the generation of coordinates.

The elliptic equations approach presented in this paper is different

from the approaches adopted in the previously cited works, i.e., References
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[6] - [9]. The proposed method depends heavily on the formulae of

Gauss and on the concept of principal curvatures of a surface. It has

been shown that a fruitful arrangement of the classical differential-

geometric results can yield a method which is easily programmable on a

computing machine, and which at any time solves a two-dimensional

partial differential equation of the form used in Ref. [5]. In this

paper only the theoretical development of the method along with a tech-

nique to redistribute the coordinate surfaces near the inner boundary

surface has been considered. The developed equations have been solved

for the generation of three-dimensional coordinates between an inner

prolate ellipsoid and an outer spherical surface in an exact analytic

form.
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2. Notation and Collection of Formulas

In what follows, the general coordinates are denoted as x i (1I 1

) 2,3). However when an expression has been expanded out in full and there

is no use for an index notation, we have set

X1 , , X2 , n X , x .

The derivatives of the position vector r - (x,y,z) are denoted as

Ti 3xi ii xiax

The covariant components of the metric tensor are

4 ~ .~(2.1)

while the contravariant components are given by

kg kj =- (2.2)I Thus in three dimensions

g adet(gii)

g g1 1 92 2 93 3 + 2g12gl3g2 3 -(9 23)
2911 -(gl 3)2922- (912 )

2 
3 3  (2.3)

Writing

1 ' 22833 - (923 )2

G2 ' g1133 - (91 3 )
2
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G3 ' gllg 22 - g12)2

G4 " g1 3g23 - g12933

G5 " 912923 - g13g2 2

G6 = g12g13 - g11g2 3  (2.4)

we have

g 1 1 = G/g , g22 - G2 /g 
33 - G3 /g

(2.5)

g12 = G4/g , g
13 - G5/g , g2 3 - G6 /g

The Christoffel symbols based on the metric gi] are

1 i g
r k g [jk,Z]

where

[Jkv-E jk r, (2.6)

k+ a

and repeated lower and upper indices imply summation. In the sequel we

have also used the surface Christoffel symbols which have been denoted as

T, where the Greek indices range over (1,2) or (3,1) or (2,3).

The coordinate which is held fixed to account for the surface geometry

is denoted by a superscript in parentheses. Thus the unit normal vector

on the surface v - const. is given by

5



n()-(r x r Ix rj (2.7)

where

v -i1: a -2 , - 3 (surface xi .const.)

v - 2 : - 3 , 0 - 1 (surface x 2 . const.) (2.8)

v -3 :a-lI , $- 2 (surface x 3 .const.)

The rectangular Cartesian components of n v are denoted as

nv M - (X M) , YM , (2.9)

The coefficients of the second fundamental form are denoted by

SMT M and U M defined as

S(V) = n(V M r aa (no sum on ax)

T~v M n(V M * r (2.10)

(v)- (v *r 0 (no sum on 8

where (v,cx,O) are in the cyclic permutations of (1,2,3), in this order.

The partial derivatives of the second order are expressible in terms

of the first order as

rj mr ~k (2.11)

For a surface on which one of the coordinates is fixed, the Gauss'

equations are

6



=TY + S(V) n(V)CCLO TaMay

r TY r + T (V) n(V) (2.12)

T r + U(v)n ( v )

Where (va,o) are in the permutational sequences of (1,2,3) as shown in

(2.8), and the repeated index y implies summation on the two indices of

a surface.

The sum of the principal curvatures of the surface v = const. is, [10],

k(V) + k (V)  (g LU (v) - 2g T(V) + ga (v)/G (2.13)
1 2 -v

where in writing equation (2.13) for a particular value of v, use must be

made of Eqs. (2.8) and (2.10). We now introduce two second order surface

differential operators by using (2.8), which for v = const. are

D() 9 aoa - 2g aa + g ata (2.14)

V V

+ a /G a - a )] (2.15)

As is well known, the operator A2 is the Beltrami differential operator

of the second order [10].

The three space Christoffel symbols which have been referred to in

the next section are given below.

1 7



~gG53 1 1  ag12  g1 1r3 L EG + G6(2 a - -

G
+ 3-(x Fx + y y + z z ) (2.16)

r32 1 agl+ ag22 112 2g 5  G6 a-

G
+ 9.-(x cnxr + y, ny + zt z; (2.17)

=" LEG 2 (2 -=;g-l -).2 -0 6ag2a

G3
+ -(xnn +y ry + z QZ ) (2.18)

8 ( nnl ynn y nn

1! 8



3. Formulation of the Problem

The principal idea of the method to be presented is to generate a

series of surfaces on each of which a certain a'priori chosen variable

or coordinate is kept fixed. Each surface to be generated starts from

a given curve of the inner body and ends on the corresponding curve of

the outer boundary, cf. Fig. 1. A routine, preferably a spline fit,

can then be used to join the successive generated surfaces so as to have

a smooth three-dimensional computational net for solving other physical

field equations.

To illustrate the method, we take v = 3 or x3  = constant on each

surface to be generated. Thus a = 1 and -= 2, viz., a and a respectively

correspond to the coordinates x1 = C and x2 -q. For the sake of brevity

of notation we will not use the superscript (3) unless it becomes neces-

sary. Thus from (2.10)

S =n r ,T =n r n U =n rnn (3.1)

where

n -ix + jY + kZ (3.2)

Equations (2.12) are

Y rT + Sn (3.3)

r TY r + Un (3.5)nn 22-y

9
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From (2.14) and (2.15) the operators D( 3 ) and A(3) are

a2  a2  a2

D 2 2 (3.6)

A2 ~ - anj-- 1

3 3

+ a~2:(i 1 a a1  (3.7)

3

We now multiply equations (3.3) - (3.5) respectively by g22' -2g1 29

gll adding and using equations (2.13) and (2.15) to have

Dr + G3 (r&A2  + r nA2n) - G3n(k1 + k2 ) (3.8)

where

A2  "-3(29 12T12 -g 22Tfl - g11T 2)

1 222

-1212 - g2 2  g11T 2) (3.9)

, 1G3  - (13G " gllg22 (1)

4 To obtain an expression for k + k consider equation (2.11) and

utilize the property that n is orthogonal to r and r so that

n r r3 3 (n *r)
- -C4 11- -

( - 12

10



n , r r32(n • r)
(3.10)

where all the derivatives with respect to are evaluated at € -

constant. Multiplying Eq. (3.8) scalarly by n and using (3.10), we

get

G (k + k2 ) Q ( )(g1 1 r 23 - 2g12r12 + g22 r'l) (3.11)

We now Propose the following deterministic problem: Let E and n be

the surface coordinates on the surface - constant, subject to the

constraints

a2- 0

(3.12)

2n  0

Then the Cartesian coordinates x,y,z of the surface satisfy the differential

equations

Dr - G3 (k1 + k2 )n (3.13)

The three scalar differential equations for the generation of the Cartesian

coordinates are then

9 2 2x -
2g12X ; + X11Xnn- KR (3.14)

g22y~ - 2g 12y~n + gi1y n YR (3.15)

922z - 2g12z~n + g11znn = ZR (3.16)

where

11



R - (Xx + Yy + Zz )(g11r 2 - 2g12r 2 + g22r3,) (3.17)

and

X- (y zn - yz)lG

Y (xz - Gz)/G' (3.18)

Z (xy - x y)/G

Equations (3.14) - (3.16) form a quasilinear system of partial

differential equations in which the components of r are assumed to be

known. Since the values of x,y,z are known on the basic inner and outer

boundaries (denoted at B and - respectively in Fig. 1), a suitable way

of prescribing r1 can be to take

r - fl(n)(r)B + f2 ()(r (3.19)

j where fl(n) and f2( ) are suitable weights having the properties

f1(n f2 (nB) -0

f(r.) - 0 , f2(n.) - 1

AFor exposing the essential nonlinear terms in the factor R we refer

to Eqs. (2.16) - (2.18) in which the r terms have been collected

separately.

Referring to Figure 2, we now solve Eqs. (3.14) - (3.16) for each

- const., on a rectangular plane by prescribing the values of x, y and

z on the lower side (C1) and upper side (C2) which represent the curves

12
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on B and - respectively. The sides C3 and C4 are the cut lines on which

periodic boundary conditions are to be Imposed. The preceding analysis

thus completes the formulation of the problem.

* 1

!= I

J
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4. Coordinate Transformation (Contraction)

For the purpos of generating coordinates between the space of the

inner and outer boundary which can be distributed in a desired manner,

we consider a coordinate transformation from x * x and n a a. Let

S- 4(x) + t

(4.1)

n - n(o) + nB

then

t - CO at x - , (xo ) - 0

(4.2)
n a n B at a - aB , n(a) 0

Writing

X(X) =  e(G) dn
dX do

and denoting the transformed metric tensor as gii, we have

A11 / 2 , -
2 + Y2 + Z2

91l " 91 1 x x x

912 = 91 2/e 912 Xx +yxy + z a

= 2/02 -- =x 2 + Y2 + Zt2922 ' ' 922 a 0 0

G3 =G 3 /6
2 ,2 .j3 - 911922 - (C12)2 (4.3)

x -X,Y -T, z- Z

14



k, + k2  ' 1 + '

KR
-  / 2 A2

Further noting that

r -(r - /2

- rOxeA (4.4)

rnn (r - .)/e2

Using (4.3) and (4.4) in Eqs. (3.14) - (3.16), ve have

922X xx - 2 ,12xo + ,-Xoo - Px QX0 + 41 (4.5)

22Yxx - 2 S1 2Yx ° + a11Y00 - Pyx + QYa + Yi (4.6)

j 22ZX - 2S12 z + illoo a P + Q% + ZR (4.7)

where

922
P "-

A x

(4.8)

Thus, by choosing A and 0 arbitrarily we can redistribute the coordinates
in the desired maner. An example of this choice is given in the next

section.



5. An Analytical Example of Coordinate Generation

In this section we shall consider the problem of coordinate genera-

tion between a prolate ellipsoid and a sphere with coordinate contraction

near the inner surface. This problem yields an exact solution of the

equations (4.5) - (4.7).

Let n a nB and n w n. be the inner prolate ellipsoid and the outer

sphere respectively. The coordinates which vary on these two surfaces

are & and €. We now envisage a net of lines = const. and 4 - const.

on these two surfaces. A curve C1 on the inner surface designated as

= o is

x - coshnBCoS° )
y - sinhnBsinoCOS& (5.1)

z - sinhnB sinosin&

Similarly, the curve C2 corresponding to 0 = on the outer surface is

x - e cos; O

n.

y = e sin 0COS& (5.2)

z e senCsinE

Based on the forms of the functions xy,z in (5.1) and (5.2), we

*k assume the following forms of xy,z for the surface C -

16



x -f(o)cos;0

y O(o)sin; coos (5.3)

2 # *(o)iD4o 0in&

The boundary conditions for f and # are

f(o B)  coshnB

f(a.) •

, !(5.4)

#(a sinhn3

i +(0o) - e

Calculating the various derivatives, metric coefficients, and all

other data needed in the equations (4.5) - (4.7), we get on substitution

an equation which has sin2 4° and cos2E . Equating to zero the coefficients

of sin2 4° and cos
2

o, we obtain

fe 09

Vr - ' (5.5)

+ (5.6)

where a prime denotes differentiation with respect to a. On direct Inte-

gration of Eqs. (5.5) and (5.6) under the boundary conditions (5.4),

we get

17



f(a) AeBn (a) + C (5.7)

#(a) - e3n(o) (5.8)

where

(A - cosh%3 )ainhn9i n. (5.9a)

e - Sinhn B

Ti

I - In[ e 1 /(0.- B )  (5.9b)
sinhn B

e (cohnB - sinhn B)
cm (5.9c)

e sinhn B

D - sinhn8B (5.9d)

As an application we may take [il]

4(x) - ax

, n(a) - b(a - B)K

where a and b are constants. Since at ni,

n(a.) - ni -inB

hence

(n)(i  - T 3) (oa o)(o - am)

(a- - A)

18'



By taking a value of K slightly greater than one (K - 1.05 or 1.1). we

can have sufficient contraction of coordinates near the inner surface.

For the chosen problem, since the dependence on is simple, we

find that the coordinates between a prolate ellipsoid and a sphere are

x- (Ae B n ( a ) + C]cos

y - DeBn(O)sinlcosg

z De Bn(a)sin~sinE

where A, B, C, and D are given in equation (5.9).

19



6. Conclusions

A new method for the generation of three-dimensional coordinates

between two arbitrary shaped bodies has been presented. The method is

based on some simple differential-geometric concepts such as the equations

of Gauss and the expressions for the principal curvatures of a surface.

The simplicity of the method lies in solving, at one time, only three

partial differential equations of the two-dimensional type. This aspect

is bound to reduce the working core requirements for a given problem on

a computing machine. Finally the method allows, in a very direct fashion,

the possibility of coordinate redistribution in the desired regions (cf.

Eqs. (4.5) - (4.7)).

An analytic solution of the proposed equations for the case of an

inner prolate ellipsoid and an outer sphere has been presented. This

example shows that one can generate coordinates between two analytically

specified surfaces of simple forms by exact solutions of the proposed

equations.

In this paper the fundamental equations which form a set of con-

, straints for the generation of coordinates in the surface are

AA
a 2 0

where A2 is the surface Beltrami operator of the second order. It must

be noted that A2 is neither a Laplace operator in the Cartesian plane

(x,y), nor in the Cartesian space (x,y,z). However, in the case of a

Cartesian plane (x,y), when there is no dependence on z, A2 reduces to

the Laplace operator V2 .

20
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C, C 2

(a)

Lia

(b)

Figure 1: (a) Topoloty of the given surfaces. Inner n~ n ~ outer

n- ncurrent variables , . (b) Surface to be generatJ for

each C const., current variables ~,n.

22



1 **

Figure 2: Figure 1(b) opened in a rectangular plane by imagining
a cut.
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